Bounds for smoothness of refinable functions

Henning Thielemann

Abstract—The VILLEMOES machine can be used to function straight from the coefficients of the refine-
compute the SOBOLEV smoothness of a refinable function. ment mask.

We start with presenting this technique. It involves the Definition 1: The vectorh with & € RZ and a

computation of the spectral radius of a special matrix fini . o
. = SEE inite number of non-zero entri =1
which has at least quadratic time complexity with respect . te number of non-zera entries al@’fez b

to the refinement mask size. For the one-dimensional case'S called arefinement masfor the function if

we deduce by linear algebra some simple estimates which H=2. hao(2t — i 1
require only a few basic operations on the mask coefficients (1) Z ]go( J) (1)
with a total of linear time complexity. For orthogonal
DAUBECHIES and biorthogonal CDF wavelet generators holds. Vice versa the functiony is called

the estimates are compared to the known regularities. refinable with respect to the mask h.

jez

For v = min{je€Z:h;#0} and x =
|. INTRODUCTION max{j € Z: h; #0} define the index set
Smoothness of functions is often measuredt = V:---:#} which is the support of the

maskh.
To be able to state MLEMOES result about
e smoothness of refinable functions we need the

in terms of HOELDER continuity and ®BOLEV
smoothness. It is a difficult topic how to comput

such smoothness measurements from a known ton of a RESZ basis. especiallv a RSz basis
finement mask of a refinable function but severgf. , €SP y .
integer translates of a refinable function.

authors created practical techniques for this purpO%q)efinition 2: A sequence(fy) of linear in
[Vil94], [Eir92], [Con90], [Dau92]. T kIkel )
The VILLEMOES machine [Vil94], [BDM00] is a dePendent functiong;, from a HILBERT spacel
is called a Resz basisof H if the set of linear

popular method for computing the globabSoLEV L ) . .
smoothness of a refinable function. It consisf;somb'nat'OnS offy is dense IrHl and the norm IrH

mainly of the computation of the largest eigenvaldé eﬂ:'r\]/géimtﬁ;mfz norm of expansion coefficient
of a so called transition matrix. It is easy structuredd ’
for one-dimensional problems and fast enough to 3(C;,C,) € RZ  Va € R”

determine the smoothness of single given refinable 2

functions. However, for automatic generation of Cy - a3 < Zakfk < Cy-|lal)?

smooth refinable functions e.g. by iterative correc- P -

tion it is too time-consuming to start thelME-

MOES machine for each iteration. Definition 3: Let o, be ¢ translated by, that is
By linear algebra we will derive some simple es- vt e R : on(t) = ot — k).

timates from the VLLEMOES theory which involve  pafinition 4: I
only a few basic operations. Some estimates sh :
theoretical limits of the smoothness dependin ? k)-kez from a HILBERT- quceH forms a Resz

) P 9 Ysis of the closure of its linear span, we say that
the length of the filter mask and one allows for |, the Resz basis property3 (), that is
verification whether a constructed wavelet is smooth ’

the sequence of translates

enough. B(p) & 3(Cy,Co) € RY Va e R”
2
Il. DEFINITIONS Cy - lalz < ZakgokH < Cy-|all;.
The VILLEMOES machine is a technique which kEZ

For some considerations it is easier to switch to
he FOURIER space. A BURIER transform maps a
lthe termregularity is avoided according to [SN97] vectorh to a trigonometric polynomiah.

computes the S8BOLEV smoothness of a refinablet



Definition 5: Given a mask: define the trigono-  To describe spaces with fractional degrees of

metric polynomialh: smoothness we make use of th®@URIER trans-
~ ke form. The FOURIER transform of a functionf is
h(€) = he ™ denoted byf. Note that we use the same notation
Definition 6: Given ge%naskh define the adjoint for the fourier_symbol of a discrete vector as yvell
filter h*: as for_the fourle_'r transform of a real function since
there is a certain analogy.
Vi €Z: h;f:h__j. Further on we need (R) which is the HWARZ

space consisting of fast decaying arbitrarily often
differentiable functions and its dual spacg(R)
which is the collection of all complex-valued tem-
_ WQ pered distributions ofR.

’ For more compact notation we will use the

Definition 7: For a given maskh with finite FOURIER multiplicator 7/;.
supportZ the matrix P, with P, € R%" is defined s s
PP P U5(€) = (1+ Jel*)"

It holds V¢ € R : h(¢) = h*(€). For the convolution
of a maskh with its adjoint holds

—

hxh*=h-

]

as
The key component of computing smoothness
b, = (hQJ'*k)(j,k)EIQ measures for refinable functions is the following
h, operation defined for a mask:
hyio hyy1  hy 1) Extract the factorcos2§ as often as possible
hyia huiz huyo hyyr  hy from m(¢). That is choosex such that
h/@ hnfl h/{72 h,{,3 hli*4 T?L(g) - (COS 5) ) h<§)
h/{ hnfl hn72 . .
h whereh is a mask without a double zeroat
" i.e. h(m) # 0 or h'(m) # 0. Note thatcos? §
and the special matriXP,.;,- is called theransition corresponds to the coefficient vecl(4, %, le)
matrix of h [SN97]. 2) Set-up the matrix?, and compute the abso-
The matrix P, describes a convolution with sub- lute value of its largest eigenvalue. This is

sequent subsampling by two. If one evaluates the  denoted by thespectral radiusp (P,).
refinement equationly for different integers one 3) The result of the operation is
discovers a dependency that allows for computation

of the values of the refinable functian at integer My = 2K — log, 0(25)

values: =2K —1—log,0(P).
14 14
gogi(ﬁl) gp((i(—i—)l) A. HOELDER continuity
: = 2P, - : The HOELDER-ZYGMUND function spaces

90(.%) g)('ﬂ) C* (R) with s € R ar_1ds >0 contai_ns all functions
that are up to[s] times differentiable and some
The structure of the eigenvalue spectrum of suahore functions. A characterization can be given
matrices is the key for measuring the smoothnessusfing a smooth dyadic resolution of the unity
wavelets. {¢;}jen, and the operatorD which “redirects”
the multiplication with ¢; to the FOURIER
I1l. V ILLEMOES MACHINE representation ([Tri92], pages 14-17):

Most commonly the smoothness of a function is.s (R) = { fesS®R): }
described by its membership in a space of functions SUDeR jen, 27° 15 (D) f(t)] < 00
of certain degree of smoothness, where the family| emma 1:

of SOBOLEV spaces and the family of GELDER ) ~

spaces are the most popular ones. {f €S (R):01-fely (R)} cC(R).



Proof: For all j € Ny andt € R it holds for V. SIMPLE ESTIMATES
a smooth dyadic resolution of unitf);};cn, like

) . ) Theoreml and Theoren? states that the smooth-
those described in [Tri92], page 15 that

ness of a refinable function depends on the number

' ' ~ of factors (1 + e¢~*) in m(£) and on the remaining
27 [y (D) f(t)] < 235/ ¥;(€) (5)‘d5 factor 7.(¢). More precisely the spectral radius of

R either P, or P, is the critical quantity. The num-

<2° /(1 + [€])* f(f)‘ d¢. ber of factors(1 + e~*) is easy to handle normally,
but the largest eigenvalue &f, is not. Thus we will
and thus it is true also for the supremum. m focus on the remaining maskand g (F).

An estimate of the IBELDER continuity for refin- ~Rémark 1:As asserted in Definitiorl the sum
able functions in terms of their refinement mask w&d_the coefficients of the filter mask is always1
derived from this embedding by Conze and Raugi:(0) = 1)- Hence the sum of the coefficients of
[CR90], [Con90], for a summary see [Dau92]. The — ~ 2
estimate can be made more simple in the case that /* also equalsl ng *h*(0) = ‘h(o)‘ = 1)-

and Theoren2 we will

h
m is a positive function, that iS¢ € R : m(§) > 0. According to Theore
consider only matrice$’ of positive filter polyno-

Theorem 1:Given the maskn decide: mials and their filter coefficients will always sum
1) If m is positive, setsy = M,,,. up to 1. _
2) If m is not positive, sek, = % (M — 1). Lemma 2:The first and the last non-zero mask

Let © be the refinable function associated with thcoefflment,hu and h,. respectively, are eigenvalues

: 5t the matrix pP,.
maskm. Then it holds Proof: Expand the determinanlet(P), — A1)

for the top and the bottom row. [ |
There are some simple general ways of estimating
the spectral radius of a matrix. E.g(P,) < || P||
holds for any compatible matrix norm. We will show
that such estimates are too weak in some cases. This
A SoBoOLEV spacelV;; (R) for s € Ny is defined should motivate the search for stronger estimates as
as the space of distributions frorfi’ (R) whose presented at the end of this section.
derivatives up to ordes are in L, (R). This idea  The following statements show that the column
was generalized to thedBOLEV spacesli; (R) of and row sum matrix norms are bounded from be-
fractional orders [Tri92]. We restrict ourselves tolow. Thus estimates based on these norms can not
H3 (R) which allows for a characterization that wagenefit from the fact that longer filters allow smaller
used by VLLEMOES to explore the smoothness ogpectral radii.

VseR:s<sy=pelC(R)

B. SOBOLEV smoothness

refinable functions. Lemma 3: 1) If x — v is even, then the row
Definition 8: The SoBOLEV function space sum norm of the matrix?, is at leastl.
H; (R) is defined as 2) If k—v is odd, then the row sum norm of the
matrix P, is at least}.
HS (R) = {f €S (R):05-fe Ly (R)}. Proof: Case2 | (k — v):

) v+K H H
The SOBOLEV smoothness of a refinable funct e “z°th row of P, which is the center row

tion can be characterized similarly to Theorem CONsists of all mask coefficients,, ..., 2, thus

([Vil93], theorem 2.3). ‘
: P = P,).
Theorem 2:Given the maskn let s = %Mm*m*. 1]l I?eazx%zz ( h)%’f
Then it holds
1) VseR:s<sy= € H(R) ZZ‘(P")%JJ‘ :Z|h’“|
2) VseR:B(p)ANp € H5 (R) = s < s her hez
that means, can be regarded as an accurate mea- > Z hy. =1

surement of the smoothness of P



Case2 1 (k —v): Lemma 5: The spectral radius of the matrik,
The ”++‘1th row of P, consists of all mask coeffi-is always at Ieas%l—z.

cients except, and the%““th row of P, consists ]

of all mask coefficients except, and thus 0(P) > —

Pl > max Z‘(Ph)j,k Proof: We make use of the fact that the

je{rtg=t it L = diagonal of P, consist of all coefficients of the
_ mask. We use the index sgtfor the eigenvalues
= max {||, 7]} + Z [ Aj, too, although the eigenvalues do not correspond
) RET\{m} one-to-one to the mask coefficients.
> —(|hy| + |hw h
2 Sl )+ 3 AT Y
keZ\{v,x} JET -
JjET
1
> 2 Z || + Z | e > Zz\j = |trace(P,)|
kez keT\{v,x} =
1 _ _
N R D Y =|>_hi|=1
2 keT\{v,x} jer
1 [ |
> B However the estimate of the smoothness depend-

m ing on the mask can be refined usingace P;

The column sum norm might be better suited. inste.ad of trace P,. More generally we observe
Lemma 4:The column sum norm of the mathatif I, has eigenvalues,, A, .1, ..., A then P
trix P, is at Ieast%. has eigenvalues}, \” |, ..., \". Thustrace(P}) =
Proof: For v = & it must beh, = 1 2_jer?j- tis By-x = (hxx) | 2 wherey | 2
(Definition 1) and thus|| P, |, = 1. For v < « the denotes the subsampling gfby a factor of2 (See

matrix P, has at least two columns. We considdhe appendix for further details.). o
the first two: We are interested in a similar characterization for

Py
[Pl = IQQ}ZI ‘(Ph)j,k Lemma 6:
VS
P x= (hTQ"_l*... *hTZ*h*x) 12"
T repran) > ‘(Ph)j,k T el > I Proof: We use induction ovem. First we
) jet je(k+22) verify that
1y R
ke{0,1} je(k+27) . .
1 For the induction step we need)(of Lemmal0 of
23 > Ihyl the appendix:
jeT
P'x = (hTZ"_l*... *h*x) 12"
> 1 h — 1 n+1 n
52| =3 ppttx =P Py
jex = (h12" "« ... xhx(hxz)|2)|2"
|
. . ) n n
It is clear that long filters allow for at least = (h12%%...xh]2xhxx)| 2"

the smoothness of short filters simply because long
filters have additional degrees of freedom comparedl:or simplification we will call the result of
with short filters. The next statement quantifies th{ﬁe convolution cascadeH™. It has support
obserservation and gives a theoretical limit of the.,, _ 1) (27 — 1)k}

smoothness for a refinable function depending Y '

the length £Z = k — v + 1) of the mask. H'=h12" %, . xh12xh



With this notion we can characteriz€;' using For fixed n the index sets7" are disjoint with
convolution and downsampling respect toj. Thus the sums can be merged using
a new index sef’j. We want to introduce a more
generic definition forkCy:

and from this we can derive the matrix representa-

Pl-x=(H"xx)|2"

tion Kp = U T
n o __ n je@r-1)Z
Py = (Hynj 1) ez -
We realize that the trace dP” is essentially a trace(Py) = H ha,
sum of selected coefficients df”™ so in the next aeky 1=0

step we will explicitly compute the coefficients of

H™. Note that due to Definitiorl the maskH" is This representation can still be improved for more

an infinite vector with finite support. efficient computation. We note that the J€f is
Lemma 7:With the index set (2" — 1)-periodic, i.e.KC} + (2" — 1)Z" = K}. The

n n 1 , following identities may illustrate that:
J; :{aGZ tapg+2a;+ -+ 2 an_lzj}

it holds that Ky = U Tan1)jh
n—1 JEZ
(H; = > [ Pa (2) ={acZ":
aeJyt =0 ag+ -+ +2" a1 =k mod (2" —1)}

_ N =J"+ (2" - 1)z
Proof: The convolution of some finitely sup- s )

ported signals, ..., z,_1 thatisy = zo*- - -xx,_1

can be computed component-wise as We can use the periodicity to reduce the mask
to length(2" — 1). To analyse this we will partition
K} into the coarse grig2" — 1)Z" and the seiM}
Yi = Z H (1o of the multi-indices within one grid cell.
bo+-- b—%z 1 ] B
Form=h12, ie F=KEn {0, 2"~ 2)"
()5 = {hk/2l k=0 mod 2' Therefore the partition ok} is
0 - else
and b, = 2'q; we obtain the claim. [ = Mi+ (2" = 12"
Using the explicit representation éf" the trace
of P can be computed by Now the trace of P can be computed more
efficiently.
trace(Py) = > Hiy_y); Lemma 8:With the operatorSy that sums up
j€T equidistant components of a vector, more precisely
= 2
jeEr-1I1 S]?h = Z hk+(2"fl)j
n—1 JEZL
= 2 2 1Im
JE@M-1)T a€J} 1=0 it holds that

and because of the finite support iof(Definition 1)

— Z Z Hhal trace(P)') Z H wh.

€(2n-1)Z acJ;* 1=0 aeMg 1=0



Proof: 2)

n—1 2 2
trace(Pl') = Z H Ny I?SIX |/\]| < z; |)‘]|
aeky 1=0 €
n—1 - Z )‘j2 = Bi
= Z Z H Paysb, JET
aeMP be(2n—1)Z" 1=0 |
n—1 Remark 2:One might hope that the eigenvalues
= Z H Z Pays s of matrices of the formP,.,,- are always real. The
aEMP 1=0 je(2n—1)Z exampleh = (2,0,0,—1) disproves this assump-
n—1 tion. It is h* h* = (—2,0,0,5,0,0,—2) and Py,
= > JIsen has the eigenvaluesl =+ 3i, —2, —2, 5.
aEME 1=0 Indeed there is a family of filters which lead to

m a constant value oB,,.,- according to Theorer3

From the definition ofM? follows that for each While the spectral radius of.,- is not bounded.
choice ofa, . . ., a,_, there is exactly one matchingSuch a family is{(1 + =,0,0, —z) : = € R}.
ag, thus #M™ = (27 —1)"" which grows rather Remark 3:0One might also assume that the ex-
fast for increasing:. A discrete PURIER transfor- istence of acomplementary filtery (i.e. a filter g
mation can speed up the computation, but the tiriech thath and g allow for perfect reconstruction,
consumed will still grow exponentially with respecéee [DS98] for details), already implies that all
to n. eigenvalues ofP,.,- are real. This is also not true

That is why this formula is only useful forsince forh = (2,0,0,—1),9 = (0,0,1,0) the filter
smalln. Especially fortrace(P?) it turns out to be ¢ iS complementary ta.

very handy. We will concentrate on this case for the Whether the spectral radius is closer to the upper
rest of this paper. It is bound or closer to the lower bound depends on the

9 distribution of the eigenvalues of the matrk,. In
Mg = {(a’ b)€10,1,2}":0=a+2b mod 3} the case that the eigenvalues have similar magnitude
= {(a,b) € {0,1, 2}’ :0=a—b mod 3} the spectral radius will be close to the lower bound.
={(0,0),(1,1),(2,2)} If there are only a few large eigenvalues and many
small ones then the spectral radius will be close to
the upper bound.
trace(P?) = (S3h)* + (Sih)? + (S3h)*. A simple lower estimate for the spectral radius

Theorem 3:For a given mask: with finite sup- th_at does not depend on the filter coefficients is
portZ lety; = S?h and By, = /4 + 47 + y3. Then 9iven by
a lower bound for the spectral radius is given by ~Lémma 9:

and thus

1

1

Tz Prse(h). 0B = e
Proof: We derive this from Theorer using

If the eigenvalues of’, are all real then there is ajpa inequality of quadratic and arithmetic mean
simple upper bound:

1 1
0(Pn) < B, \/g(yé Tyt u2) 2 S+t )
Proof: 1 i
1) B, >-
7 N2> A V3o
# 'Djﬂgg’ i1 =) Il and the last holds because
JET
>N oty +ye=) hi=1
JET JET

= |trace(P})| = B;, due to RemarkL. |
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We will now consider an optimization for esti- — Sobolev regularity
mating the ®BOLEV smoothness ofp. Accord- i .
ing to Theorem2 we have to process * h* 10r ‘ :
instead of the pure filter mask to that end. Then

Bhp» = Z?:o (Sf(h ¢ h*))Q. This can be further 8|
simplified thus avoiding the need for an explici‘g

convolutionh x h*. With y; as defined in Theorerd
and

6F

PL=Yo+y1+ty2=1

P2 = o + Ui + 95 o
we obtain
0 L L L L L L L
SS(],L * h*) — yoyo _|_ ylyl _|_ y2y2 — p2 0 5 10 15 orzdoer 25 30 35 40
2 _
S2(h * h*) = yoyr + Y1y + Yoyo = i Fig. 1. SOBOLEV smoothness of BUBECHIES wavelets ¢ as in
9 2 [Dau92], 1¢ is the HAAR generator) depending on the order of the
% pi—Dp wavelets.
S3(h* h*) = yoys + 1Yo + Yay1 = 122
and thus
; 3) Compute the sumg, = > ., hyi35-
Bpap = \/pg +2. (1 - pz) 4) Compute the square sum = 2 + y? + y2.
* 2
2 5) ComputeBy., = \/g (p2 — %) + %
3 N2 1 6) Eventually the ®BOLEV smoothness limik,
=\/3 (pg — §) + 3 is bounded by

V. EXAMPLES K —1og, 2Bp.p+ < o

We will now compare our simple estimates with 41 further if one knows that the eigenvalues
the exact regularities provided by Theor@rfor two are all real then

standard families of wavelet bases. The considered
wavelet bases have filter polynomials that are not
positive in general thus the ¢£LDER smooth-

ness estimate according to Theordms derived ) _ N

The orthogonal BUBECHIES wavelets as well as IN magnitude, thus even simple criteria like the sum
the biorthogonal @HEN-DAUBECHIES-FEAUVEAU  Of the coefficients being is infringed!

wavelets (CDF) are chosen because they can be

automatically constructed also for high orders (see

[Dau92], chapters 6.1 and 8.3.4). The consideréd OrthogonalDAUBECHIES wavelets

filter masks lead to transition matrices with real For a given power of the fact0|(1 + e—ig)

eigenvalues and thus both estimates of Theogem, m(€) (this is considered as therder) the

can be applied. _ o DAUBECHIES wavelet filter is the shortest one that
The complete algorithm for estimating thgsaqs to an orthogonal wavelet basis. Actually there
SOBOLEV smoothness is are several filters possible for one order but they
1) Let m be the filter mask. . all share the same filter. + m* and thus the same
2) Divide m(¢) by the given powef1 +¢7)", SosoLEvV smoothness. Figurd shows that the
the quotient isi(£). The maskh may have the upper estimate of the smoothness is at nmostoo
supportZ. high and the lower estimate at masb too low.

1



; ;
—— Sobolev regularity
—-- lower estimate
- — upper estimate

|
a1
T

regularity

|
[y
o
T

-15+

Lemma 10:
(h1k) | k=h 3)
(hTE)Tj=hT(k-j)
(hlE)lj=h](k-j)
(gxh)Thk=(gTk)*(hT1k)
(gThkx+h)k=gx(h|Ek) (4)

Remark 5: The identity @) is an exception due to
its asymmetry. The problem is that the distributivity
with respect to down sampling, that(ig=h) | k =

L
0 5 10 15 20 25 30 35 40
order

(91 k)=

(h | k), does not hold in general.
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